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Abstract 

Background:  Recent discovery of the gene editing system - CRISPR (Clustered Regularly Interspersed Short Palin-
dromic Repeats) associated proteins (Cas), has resulted in its widespread use for improved understanding of a variety 
of biological systems. Cas13, a lesser studied Cas protein, has been repurposed to allow for efficient and precise 
editing of RNA molecules. The Cas13 system utilizes base complementarity between a crRNA/sgRNA (crispr RNA or 
single guide RNA) and a target RNA transcript, to preferentially bind to only the target transcript. Unlike targeting the 
upstream regulatory regions of protein coding genes on the genome, the transcriptome is significantly more redun-
dant, leading to many transcripts having wide stretches of identical nucleotide sequences. Transcripts also exhibit 
complex three-dimensional structures and interact with an array of RBPs (RNA Binding Proteins), both of which may 
impact the effectiveness of transcript depletion of target sequences. However, our understanding of the features and 
corresponding methods which can predict whether a specific sgRNA will effectively knockdown a transcript is very 
limited.

Results:  Here we present a novel machine learning and computational tool, CASowary, to predict the efficacy of a 
sgRNA. We used publicly available RNA knockdown data from Cas13 characterization experiments for 555 sgRNAs 
targeting the transcriptome in HEK293 cells, in conjunction with transcriptome-wide protein occupancy information. 
Our model utilizes a Decision Tree architecture with a set of 112 sequence and target availability features, to classify 
sgRNA efficacy into one of four classes, based upon expected level of target transcript knockdown. After accounting 
for noise in the training data set, the noise-normalized accuracy exceeds 70%. Additionally, highly effective sgRNA 
predictions have been experimentally validated using an independent RNA targeting Cas system – CIRTS, confirming 
the robustness and reproducibility of our model’s sgRNA predictions. Utilizing transcriptome wide protein occupancy 
map generated using POP-seq in HeLa cells against publicly available protein-RNA interaction map in Hek293 cells, 
we show that CASowary can predict high quality guides for numerous transcripts in a cell line specific manner.

Conclusions:  Application of CASowary to whole transcriptomes should enable rapid deployment of CRISPR/
Cas13 systems, facilitating the development of therapeutic interventions linked with aberrations in RNA regulatory 
processes.
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Background
Gene editing technologies have played an increasingly 
important role in numerous life science domains in the 
recent years, especially in the fields of biology, biotech-
nology, and medicine [1]. At the center of many of these 
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discoveries is the CRISPR/Cas9 gene editing system [2]. 
This system has allowed an unprecedented level of accu-
rate and precise editing of the genome. Several limita-
tions have been recognized with the use of CRISPR/Cas9 
system: the requirement of a PAM (protospacer adjacent 
motif ) sequence adjacent to the target gene sequence, 
reliance on dynamic DNA repair procedures [3], and its 
inability to facilitate tissue specific alterations [4]. How-
ever, other Cas proteins are being identified and repur-
posed as systems for genome and transcriptome editing 
[5].

One such class of protein, Cas13, has been modified 
to directly edit RNA transcripts [5]. Much like Cas9, the 
Cas13 system is a two-component system: the Cas13 
enzyme and sgRNA. After binding to the sgRNA, the 
Cas13 complex probes the cellular RNA molecules for a 
sequence complementary to the spacer sequence of the 
bound sgRNA. Once identified, the enzyme binds to the 
RNA molecule for its catalytic cleavage, rendering it inef-
fective and facilitating RNA degradation. Some of the 
most promising aspects of this system are the independ-
ence from the PAM motif restriction and the potential 
for designing guide sequences for enabling tissue specific 
transcript knockdowns.

While the Cas13 system does offer some distinct 
advantages over the Cas9 system, it also poses some 
unique challenges. First and foremost, most of the tran-
scriptome remains unknown, owing to poor under-
standing of various post transcriptional processes. RNA 
molecules can also adopt a variety of complex three-
dimensional structures through networks of inter/intra-
molecular interactions. This irregular complex structure 
acts to the number of stretches available for complemen-
tary base pairing. Therefore, a tool to predict the efficacy 
of a given sgRNA is desirable.

To that end, CASowary was developed as a novel 
approach for sgRNA efficacy prediction [6, 7]. Although 
several previous studies have focused on creating soft-
ware to predict sgRNA for CRISPR Cas9, to our knowl-
edge, there have significantly fewer attempts for doing 
such for CRISPR Cas13 [8–10]. CASowary was written 
in python3 and uses a variety of functions from various 
libraries: vector operations form numpy, statistical anal-
ysis from scipy, machine learning utilities from sklearn, 
and data visualization from seaborn and matplotlib 
[11–15]. The development and validation of CASowary 
took place over three distinct phases: Data Collection 
and Integration, Feature Selection, and Model Genera-
tion and Benchmarking (Fig.  1). Three different types 
of data were utilized by the model for predictions - tar-
geted RNA knockdown experiments [16], transcriptome-
wide protein occupancy information [17], and sgRNA 
spacer sequence alignment data. Feature selection took 

place through a variety of steps including composition 
analysis, k-mer capture, and evaluating feature signifi-
cance and contribution. The model was validated using 
both 3-fold and 5-fold cross-validation. Additionally, the 
model’s predictions were verified through an experimen-
tal protocol with an orthogonal CRISPR based system 
[18]. The model was then applied to all transcripts from 
among 5000 random genes, to determine any biological 
relevance of the model’s predictions.

Implementation
Genome‑scale sequence data for CRISPR‑Cas13
Utilizing the Cas13 human transcript knockdown experi-
ments from Abudayyeh et al. [16], we sought to develop 
a machine learning model that predicts the effectiveness 
of a given sgRNA at knocking down a target transcript. 
Firstly, we investigated the sequence composition i.e. 
mono-, di-, and tri-nucleotide compositions for all 555 
guide-RNAs (or sgRNA) at each position along the 28-nt 
spacer length. We obtained a list of over and under-rep-
resented k-mers (chi-squared test) at each location across 
the spacer sequence of the sgRNA (Fig.  2 A-B). After-
wards, sgRNAs were partitioned into distinct groups 
based upon their nucleotide composition at a specific 
location; in order to perform a Kruskal Wallis [19] test. 
Sets of positions with p-values from Kruskal Wallis test 
less than 0.05 were correlated with nucleotides that were 
over or under-represented at a particular location (See 
Supplementary Material).

The significance of each k-mer composition feature 
was then evaluated using the univariate linear regression 
module from sklearn. Next, all sequence features with 
p-values greater than 0.05 were removed (Fig. 2C). Wary 
of being too inclusive with all statistically significant fea-
tures, two additional subsets of these features were also 
considered, using a Z-score analysis on the negative log 
of p-values. Using 2 and 3 as the cutoff values, two sets 
of highly correlated statistical features were generated. In 
addition to this, a Gini score analysis [20] was performed 
on each k-mer using the Decision Tree [21] and Random 
Forest [22] machine learning modules from sklearn. A 
similar approach was utilized by Fusi et al. [20] for deter-
mining the most important features for CRISPR/Cas9 
efficiency (See Supplementary Material).

Protein‑RNA occupancy profile
In addition to the sequence composition features, we 
included transcriptome-wide occupancy as a feature 
into the model. To do so, we downloaded the transcrip-
tome-wide protein occupancy data (raw reads in the 
FASTQ format) of HEK293 cells from Schueler et  al., 
SRR1330461 and SRR1330462 [17]. Reads were checked 
for adapter content and overall quality using Fastqc [23], 
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trimmed using Trim Galore [24, 25], and aligned to the 
human reference transcriptome,a combination of hg38 
cDNA and ncRNA downloaded from Biomart (Addi-
tional file 1) [26] using hisat2 [27]. After sequence align-
ment, peak calling was performed using macs2 (using the 
-- nomodel option) [28], the resulting .xls file was used 
as an input for the model (Additional file 2). Each guide 
sequence was also aligned to the human reference tran-
scriptome, using tophat [29], allowing for 3 mismatches, 
the maximum number of mismatches tolerated by the 
CRISPR cas13 system [16]. The indexed position of 
each guide on the target transcript was compared with 
the protein occupancy information for any overlap. The 
amount of overlap was recorded as a percentage of length 

of the spacer sequence of the guide and incorporated as a 
feature in the model.

Additional features
In addition to the k-mer composition and occupancy 
features, a variety of other features were also included. 
These include guide spacer percent composition for each 
nucleic acid, guide location along the length of the tran-
script, with 0 at the 5` end and 1 at the 3` end, and the 
observed number of complementary sequences in the 
reference transcriptome obtained from tophat alignment. 
A previous study [30] has shown that RNA base composi-
tion plays a crucial role in not just the long term stability 
of the polynucleotide, but also in the activity of the Cas13 
system. It is widely believed that the ends of transcripts, 

Fig. 1  Algorithmic Framework for CRISPR Cas13 Guide RNA Prediction. CRISPR Cas13 knockdown experiments, protein occupancy, and 
transcriptomic alignment data was gathered for consideration and analysis by the model. Feature lists were created through composition analysis 
and k-mer capture. The significance and contribution of each feature was estimated to create finalized possible lists of features. The final feature 
list for the model was generated through comparison of 3-fold and 5-fold cross-validation experiments. Model predictions were validated through 
direct comparison with performed experiments. The model used to predict sgRNA’s spanning all transcripts associated with 5000 genes. The results 
were collected and analyzed for any potential biological relevance for predictions
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both 5` and 3` are highly structured, both to protect the 
transcript from degradation and to facilitate movement 
to different cellular compartments. To account for this, 
relative guide target position was incorporated as a fea-
ture into the model by calculating the midpoint of the 
complementary region of the transcript and normalizing 
by the length of the target transcript. Finally, in addition 
to the length and relative position of the spacer sequence 
with respect to the target, it is possible for a guide to be 
complementary to multiple regions of the same tran-
script or portions of different transcripts. This redun-
dancy in targets, could possibly lead to off target effects, 
and significantly reduce the system’s ability to deplete a 
target transcript. To capture this in the model, the num-
ber of different hits returned from the tophat alignment 
for each guide was also recorded as a feature.

Model architecture and feature selection
The occupancy and composition features were then com-
bined with several sets of k-mer features (significant, 
Z-score > 2, Z-score > 3, decision tree Gini (DT Gini), and 

random forest Gini) and tested using a variety of machine 
learning algorithms. Each framework was evaluated 
based on their ability to accurately classify guides into 
one of four classes (0–3), based upon the quartile of tran-
script expression. This was tested by utilizing two differ-
ent methods of cross-validation: 3-fold and 5-fold. For 
the 3-fold cross-validation, the experimental replicates 
were divided into separate folds, with two replicates serv-
ing as the testing data, and the other serving as an inde-
pendent data set. For the 5-fold cross-validation the data 
from all 3 replicates were randomized, with 80% selected 
as training data and 20% selected for testing. The average 
values of the three different 3-fold experiments are pre-
sented in Table 1, as well as the average value of 100 dif-
ferent 5-fold experiments.

Due to the experimental noise native to the data 
source methodology, a significant amount of the exper-
imental replicates for a specific guide differed sig-
nificantly in transcript expression, often by more than 
25%. This discordance in the training data lead to the 
model receiving different labels for the same set of 

Fig. 2  K-mer Analysis to study the guide composition. A Bar plot of the population of sgRNAs that contain a specific dinucleotide at position 8. 
B Box plot of target transcript expression values as a function of the nucleotide at position 8. C Barplot of negative log of univariate linear regression 
significance p-value for all monomers at all positions across the guide. D Bar plot of the feature contribution score for each feature in the Random 
Forest gini feature list.
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training features, imposing a hard cap to the model’s 
cross-validation performance. To account for this, the 
models were evaluated based upon noise-normalized 
accuracy. The noise-normalized maximum was calcu-
lated by counting the number of occurrences where one 
experimental replicate differed in transcript expression 
quartile, with another replicate of the same experiment. 
Put more formally by, computing the size of the set of 
tuples (i,j) such that xi = xj and yi ≠ yj, divided by the 
size of the set (i,j), and subtracting that value from 1 
(where x and y correspond to the model input data and 
the label, respectively). The total model accuracy was 
then divided by the noise-normalized maximum to cre-
ate the noise-normalized accuracy value.

Once the optimal model architecture and feature set 
was determined, the importance of each feature was 
studied. To this end, the model was evaluated using 
5-fold cross-validation 100 times, to establish a back-
ground. A single feature was removed from the model, 
and the model was evaluated another 100 times. The 
difference in model performance between the mean 
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model accuracy and the background was taken to be 
the result of the removed feature (Fig. 2D).

POP‑seq
Briefly, a total of 20 million cells were subjected to three 
variants of POP-seq including UV crosslinking, Formal-
dehyde crosslinking and No-crosslinking approaches (as 
described in Srivastava et  al. [31]). Cells were lysed in 
trizol and the resulting interphase layer was treated with 
RNase A/T1, Proteinase K, DNase I followed by deple-
tion of r-RNA.

RNA purity and concentration were assessed at each 
step using Nanodrop, based on the absorbance ratio 
260/280 > 2. RNA integrity was evaluated using Agilent 
2100 Bioanalyser system. Atleast 50 ng of r-RNA depleted 
RNA was used to generate sequencing libraries using 
the True-seq small RNA library prep kit (Illumina). All 
libraries were barcoded and sequenced in parallel on a 
Next-seq platform for 400 million reads to obtain 75 bp 
single end reads.

Results
CASowary takes a list of gene names (Additional file 3) 
as input and exports a list of sgRNA sequences pre-
dicted to be at least efficient, with a transcript expres-
sion value between 0.5 and 0. The tool first collects a 
list of Ensembl transcripts that map to the input genes 
(using Additional  file  4), then creates all possible 28 

Table 1  Model Architecture Performance by Feature Set

Distribution of model accuracy using a variety of different architectures and different feature lists for both 5-fold and 3-fold cross validation methods. For KNN and 
Random Forest, average values for parameters with the highest accuracy are recorded in brackets

P < 0.05 Z > 2 Z > 3 Gini Gini DT

3-Fold

  Random Forest 0.717 [55.4] 0.713 [57.55] 0.714 [51.1] 0.716 [54.35] 0.717 [50.55]

  KNN 0.715 [2] 0.715 [2] 0.711 [2] 0.717 [3] 0.717 [3]

  SVC [linear] 0.71 0.609 0.505 0.6 0.64

  SVC [poly] 0.698 0.607 0.517 0.599 0.616

  SVC [sigmoid] 0.62 0.551 0.47 0.54 0.553

  SVC [rbf ] 0.642 0.521 0.487 0.567 0.581

  Decision Tree 0.715 0.715 0.711 0.715 0.714

5-Fold

  Random Forest 0.654 [41.3] 0.651 [46.75] 0.641 [45.75] 0.652 [43.95] 0.654 [41.3]

  KNN 0.558 [3.39] 0.496 [9.71] 0.515 [8.44] 0.535 [3.67] 0.558 [3.39]

  SVC [linear] 0.615 0.553 0.504 0.589 0.634

  SVC [poly] 0.593 0.535 0.501 0.562 0.574

  SVC [sigmoid] 0.551 0.489 0.458 0.517 0.521

  SVC [rbf ] 0.563 0.504 0.469 0.537 0.541

  Decision Tree 0.634 0.636 0.634 0.64 0.637
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nucleotide guides that span the length of those tran-
scripts and saves them in a FASTA file. The FASTA file 
is then aligned to the reference transcriptome using 
tophat, allowing for 3 mismatches, to create a BAM file. 
The resulting BAM file is converted to a BED file using 
bedtools [32]. That BED file is then fed into the model 
where it classifies each guide; and outputs a separate 
text file for each transcript mapping to an input gene 
name, containing all highly effective guide sequences 
ranked upon model confidence in its classification.

Our tool uses a Decision Tree architecture and set of 
features (Additional  file  5) based upon Random For-
est Gini analysis to classify a sgRNA into 1 of 4 classes, 
based upon predicted transcript knockdown efficiency. 
Each class represents a specific quartile of normalized 
expression (0: 0–0.25, 1: 0.25–0.5, 2: 0.5–0.75, and 3: 
0.75–1). Guides belonging to class 0 and 1 were cat-
egorized as highly efficient and efficient, while classes 
2 and 3 correspond to inefficient and highly inefficient, 
respectively. Utilizing 5-fold and 3-fold cross-valida-
tion, this model was benchmarked with noise-nor-
malized accuracy of 70.1 and 74.3% respectively (69.2 
and 71.5% without accounting for noise in the source 
data). A small amount of overfitting was observed in 
the 3-fold cross-validation, due to the identical model 
inputs, so 70.1% was believed to be the most accurate 
measure of the model’s performance. The data from the 
highest performing 5-fold cross validation was saved 
as the default training data for the published model 
(Additional file 6).

Using one class vs all pairwise comparisons, a Receiver 
Operating Characteristic (ROC) curve for the model was 
created (Fig.  3). Calculating the Area Under the Curve 
(AUC) for each class revealed that the model performed 
best predictions for highly efficient and highly inefficient 
guides (0: 0.949, 1: 0.869, 2: 0.753, and 3: 0.839). These 
numbers clearly illustrate an increased sensitivity in 
model’s predictions for highly efficient and efficient class 
of guides, maximizing its effectiveness.

To confirm the accuracy and robustness of the model, 
we conducted a series of characterization experiments 
using an orthogonal RNA-targeting system, CIRTS 
(CRISPR-Cas-inspired RNA targeting system) [18, 33]. 
Numerous guides targeting a single SMARCA4 tran-
script (ENST00000344626.9) were obtained from IDT 
and the transcript depletion experiment data was gener-
ated and analyzed. Comparing our model’s predictions 
of high (best) and low (worst) efficiency guides and the 
experimental results of CIRTS showed a very high cor-
relation (Fig. 4).

During the development of CASowary, we observed 
that specific classes of guides exhibited preferential 
patterns across the length of the target transcript. To 
confirm this trend, a comprehensive analysis of the pre-
dictions for a random assortment of 5000 gene tran-
scripts was performed, resulting in 12.7 million mapped 
guides. All guides of a specific class were then grouped 
and plotted against their corresponding location in the 
transcript, from 5` to 3` direction, by normalizing the 
length to understand positional preferences for various 

Fig. 3  CASowary Model Performance. ROC curve for CASowary Decision Tree model using Random Forest feature list.
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Fig. 4  Comparison of CASowary Predictions with CIRTS Results. CIRTS experiments SMARCA4 (add transcript ID) transcript measurements 
correlated with high efficiency CASowary guide predictions, transcript expression value between 0.25–0 (red) and low efficiency CASowary guide 
predictions, transcript expression value between 0.75 and 1 (blue)

Fig. 5  Comparison of Training Data with Gene Predictions: A Density plot of Efficient (Highly Efficient and Efficient) and Inefficient (Inefficient and 
Highly Inefficient) guides from the training data. B Density plot of Efficient and Inefficient guides from the 5000 random genes. C Pie chart for the 
breakdown of guide predictions from the training data. D Pie chart for the breakdown of the guide predictions from the 5000 random genes
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classes of guides. This analysis revealed that the majority 
of the guides were predicted to be inefficient, either cat-
egorized as Highly Inefficient or Inefficient (90.7%) (Fig. 5 
C-D). In addition, our data suggests that efficient guides 
(Efficient and Highly Efficient) primarily reside in the 
intermediate regions of the transcript, especially between 
30 and 70% the length of the transcript (Fig. 5A-B). Dis-
tribution of the guide locations was similar when we 
plotted the data for the complete training data (Fig. 5A) 
as well as the computational guide predictions for 5000 
genes (Fig. 5B). This observation supports the theory that 
the ends of active mRNAs are highly structured, that lim-
its the binding efficiency of the CRISPR-Cas13 system.

The secondary location for efficient guides, lying 
between 0 and 20% of the transcript (near the 5` end) 
among the computational predictions (Fig.  5B), was 
unexpected and will require additional investigation. 
However, the tertiary location for efficient guides, 
between 0.8 and 1, was of particular interest, due to its 
lower abundance. Of the 5000 genes included in the anal-
ysis, transcripts from 4361 different genes included effi-
cient guides in the upper quintet. That subset included 
1417 different genes associated with lncRNA (32%), over 
90% of all genes (1570) associated with lncRNA. The 
average length of these transcripts (1670 nucleotides) 
was significantly longer than the average length of all 
transcripts (1537 nucleotides) with p-values from Mann-
Whitney [34] of 1.34 × 10 − 43. This illustrates that longer 
transcripts are more likely to have guides in this region, 
and that this region may be the prime target for lncRNA 
depletion.

Next, we investigated the ability of CASowary to gen-
erate cell type specific guide predictions by employing 
the tool to predict guide sequences on the HeLa cell line. 
To this end, we utilized in-house phase separation based 
protein occupancy data for the HeLa cell line, through a 
method called Protein-Occupancy Profile Sequencing 
(POP-seq) to map protein-RNA interactions on a tran-
scriptome wide scale [31]. Protein RNA-interactions are 

known to vary from cell type to cell type, which would 
alter the accessibility feature of the current model [35, 
36].

The reads from the POP-seq experiment for HeLa cells, 
corresponding to transcriptomic regions interacting with 
proteins, were run through the computational pipeline 
as described in methods (Additional file 7). The resulting 
file was then substituted for the HEK293 peak file from 
Schuler et  al., in CASowary’s input (see Methods). A 
list of 100 candidate genes with differential binding pro-
files between the HEK293 and the HeLa files was gener-
ated by running them through DiffHunter [37]. This list 
of candidate genes was then analyzed using CASowary 
with the HeLa occupancy profile. Transcript levels were 
verified by comparing the abundance of reads support-
ing a specific transcript from RNA-Seq experiments for 
the respective cell line. This data was obtained for both 
HEK293 and HeLa cells from the Gene Expression Omni-
bus (GEO) [38], series accession number GSE146946.

The results of CASowary predictions for the two 
cell lines were visualized using Integrative Genom-
ics Viewer [39] along with relative RNA abundance 
(SRR11304482 and SRR11304484, for HEK293 and HeLa 
cells respectively) [40]. We observed that CASowary 
predicted high quality guides in the transcript regions 
(ENST00000251507.8 encoding RABGAP1L) that were 
less occupied by proteins exhibited by the reduced POP-
seq signal, thereby indicative of potential guides that can 
disrupt the RNA transcript (Fig. 6). For instance, in the 
HEK293 cells, high quality guides were predicted in the 
end region of the transcript, where there is lower protein 
binding. While in the HeLa cells, guides were predicted in 
the start, middle, and end regions of the transcript since 
there was little to no POP-seq signals detected in these 
regions. Overall, our results indicate that CASowary can 
predict high quality guides in a cell type specific manner 
by employing protein occupancy profiles for the respec-
tive cell lines. This observation further illustrates the sig-
nificance and need for more in-depth protein occupancy 

Fig. 6  Cell Line Specific Predictions: IGV tracks for ENST00000251507.8, a protein coding transcript for RABGAP1L. The top collection of tracks 
corresponds to protein occupancy (blue), high quality guide locations (transcript expression value between 0 and 0.5) (green), and transcript 
abundance for HEK293 cell line (gray). The bottom collection of tracks is the same for the HeLa cell line
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protocols to enable guide predictions on gene regulatory 
regions tailored for specific tissues and cell types.

Conclusions
Gene and transcript editing technologies, such as 
CRISPR and its variant systems, will continue to evolve 
for their application, and so too will the demand for com-
putational and predictive tools to improve the efficacy 
of these methods. We present CASowary as the first of 
its kind, tool that provides RNA targeting CRISPR sup-
port software. Utilizing the selective set of sequence and 
RNA accessibility features, our tool can generate a list of 
potential sgRNAs predicted to be highly efficient, from 
among thousands of possible guides. Therefore, CASo-
wary’s predictions open the door for new RNA based 
gene therapies and personalized medicine.

Despite the success of the current iteration of our tool, 
there still remains room for improvement. In the future, 
we aim to incorporate additional availability information 
by considering the structure of the target RNA in  vivo. 
There is also a desire to expand the cell and tissue specific 
predictions, but that requires substantially more protein 
occupancy information.

Availability and requirements
CASowary is written in Python, requiring 3.6.8 or above, 
with some dependencies on Python 2.7.16. Source code 
for CASowary is available for free for academic use under 
GitHub (https://​github.​com/​Janga-​Lab/​CASow​ary).
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sequence used in this study.

Additional file 5 Tab delimited file containing the k-mer, the position of 
the k-mer in the guide, and the associated p-value for that k-mer.

Additional file 6. Tab delimited file containing the training data for the 
model. The header contains the names for each of the features used.

Additional file 7. A peak file generated using macs2 software on the 
aligned POP-seq data for HeLa cell line using hg38_transcriptome.fasta 
(Additional File 1) as a reference.

Additional file 8. 
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